There are four modules in Edward: ed.criticisms
, ed.inferences
, ed.models
, and ed.util
.
ed.criticisms
is comprised of functions. They operate on random variables in a model or they operate on NumPy arrays representing values drawn from the random variables.
ed.criticisms.evaluate
ed.criticisms.ppc
ed.criticisms.ppc_density_plot
ed.criticisms.ppc_stat_hist_plot
ed.inferences
is mostly comprised of classes. They are organized in a class hierarchy, where methods are shared via parent classes and Inference
is the top-most base class.
ed.inferences.Inference
ed.inferences.VariationalInference
ed.inferences.MonteCarlo
ed.inferences.complete_conditional
ed.models
is comprised of random variables. The list of available random variables depends on the TensorFlow version installed. For TensorFlow 1.6.0, the following are available:
ed.models.RandomVariable
ed.models.Autoregressive
ed.models.Bernoulli
ed.models.BernoulliWithSigmoidProbs
ed.models.Beta
ed.models.BetaWithSoftplusConcentration
ed.models.Binomial
ed.models.Categorical
ed.models.Cauchy
ed.models.Chi2
ed.models.Chi2WithAbsDf
ed.models.ConditionalDistribution
ed.models.ConditionalTransformedDistribution
ed.models.Deterministic
ed.models.Dirichlet
ed.models.DirichletMultinomial
ed.models.DirichletProcess
ed.models.Empirical
ed.models.ExpRelaxedOneHotCategorical
ed.models.Exponential
ed.models.ExponentialWithSoftplusRate
ed.models.Gamma
ed.models.GammaWithSoftplusConcentrationRate
ed.models.Geometric
ed.models.HalfNormal
ed.models.Independent
ed.models.InverseGamma
ed.models.InverseGammaWithSoftplusConcentrationRate
ed.models.Laplace
ed.models.LaplaceWithSoftplusScale
ed.models.Logistic
ed.models.Mixture
ed.models.MixtureSameFamily
ed.models.Multinomial
ed.models.MultivariateNormalDiag
ed.models.MultivariateNormalDiagPlusLowRank
ed.models.MultivariateNormalDiagWithSoftplusScale
ed.models.MultivariateNormalFullCovariance
ed.models.MultivariateNormalTriL
ed.models.NegativeBinomial
ed.models.Normal
ed.models.NormalWithSoftplusScale
ed.models.OneHotCategorical
ed.models.ParamMixture
ed.models.PointMass
ed.models.Poisson
ed.models.PoissonLogNormalQuadratureCompound
ed.models.QuantizedDistribution
ed.models.RelaxedBernoulli
ed.models.RelaxedOneHotCategorical
ed.models.SinhArcsinh
ed.models.StudentT
ed.models.StudentTWithAbsDfSoftplusScale
ed.models.TransformedDistribution
ed.models.Uniform
ed.models.VectorDeterministic
ed.models.VectorDiffeomixture
ed.models.VectorExponentialDiag
ed.models.VectorLaplaceDiag
ed.models.VectorSinhArcsinhDiag
ed.models.WishartCholesky
ed.models.WishartFull
ed.util
is comprised of functions for miscellaneous usage.
ed.util.Progbar
ed.util.check_data
ed.util.check_latent_vars
ed.util.compute_multinomial_mode
ed.util.copy
ed.util.dot
ed.util.get_ancestors
ed.util.get_blanket
ed.util.get_children
ed.util.get_control_variate_coef
ed.util.get_descendants
ed.util.get_parents
ed.util.get_session
ed.util.get_siblings
ed.util.get_variables
ed.util.is_independent
ed.util.random_variables
ed.util.rbf
ed.util.set_seed
ed.util.to_simplex
ed.util.transform
ed.util.with_binary_averaging
ed.VERSION
ed.__version__