ed.criticisms.ppc_stat_hist_plot
ed.ppc_stat_hist_plot
ppc_stat_hist_plot(
y_stats,
yrep_stats,
stat_name=None,
**kwargs
)
Defined in edward/criticisms/ppc_plots.py
.
Create histogram plot comparing data to samples from posterior.
y_stats
: float. Float representing statistic value of observed data.yrep_stats
: np.ndarray. A 1-D NumPy array.stat_name
: string. Optional string value for including statistic name in legend. **kwargs: Keyword arguments used by seaborn.distplot can be given to customize plot.matplotlib axes.
import matplotlib.pyplot as plt
# DATA
x_data = np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 1])
# MODEL
p = Beta(1.0, 1.0)
x = Bernoulli(probs=p, sample_shape=10)
# INFERENCE
qp = Beta(tf.nn.softplus(tf.Variable(tf.random_normal([]))),
tf.nn.softplus(tf.Variable(tf.random_normal([]))))
inference = ed.KLqp({p: qp}, data={x: x_data})
inference.run(n_iter=500)
# CRITICISM
x_post = ed.copy(x, {p: qp})
y_rep, y = ed.ppc(
lambda xs, zs: tf.reduce_mean(tf.cast(xs[x_post], tf.float32)),
data={x_post: x_data})
ed.ppc_stat_hist_plot(
y[0], y_rep, stat_name=r'$T \equiv$mean', bins=10)
plt.show()