# Module: ed.models

Defined in edward/models/__init__.py.

## Classes

class Autoregressive: Autoregressive distributions.

class Bernoulli: Bernoulli distribution.

class BernoulliWithSigmoidProbs: Bernoulli with probs = nn.sigmoid(logits).

class Beta: Beta distribution.

class BetaWithSoftplusConcentration: Beta with softplus transform of concentration1 and concentration0.

class Binomial: Binomial distribution.

class Categorical: Categorical distribution.

class Cauchy: The Cauchy distribution with location loc and scale scale.

class Chi2: Chi2 distribution.

class Chi2WithAbsDf: Chi2 with parameter transform df = floor(abs(df)).

class ConditionalDistribution: Distribution that supports intrinsic parameters (local latents).

class ConditionalTransformedDistribution: A TransformedDistribution that allows intrinsic conditioning.

class Deterministic: Scalar Deterministic distribution on the real line.

class Dirichlet: Dirichlet distribution.

class DirichletMultinomial: Dirichlet-Multinomial compound distribution.

class DirichletProcess: Dirichlet process $$\mathcal{DP}(\alpha, H)$$.

class Empirical: Empirical random variable.

class ExpRelaxedOneHotCategorical: ExpRelaxedOneHotCategorical distribution with temperature and logits.

class Exponential: Exponential distribution.

class ExponentialWithSoftplusRate: Exponential with softplus transform on rate.

class Gamma: Gamma distribution.

class GammaWithSoftplusConcentrationRate: Gamma with softplus of concentration and rate.

class Geometric: Geometric distribution.

class HalfNormal: The Half Normal distribution with scale scale.

class Independent: Independent distribution from batch of distributions.

class InverseGamma: InverseGamma distribution.

class InverseGammaWithSoftplusConcentrationRate: InverseGamma with softplus of concentration and rate.

class Laplace: The Laplace distribution with location loc and scale parameters.

class LaplaceWithSoftplusScale: Laplace with softplus applied to scale.

class Logistic: The Logistic distribution with location loc and scale parameters.

class Mixture: Mixture distribution.

class MixtureSameFamily: Mixture (same-family) distribution.

class Multinomial: Multinomial distribution.

class MultivariateNormalDiag: The multivariate normal distribution on R^k.

class MultivariateNormalDiagPlusLowRank: The multivariate normal distribution on R^k.

class MultivariateNormalDiagWithSoftplusScale: MultivariateNormalDiag with diag_stddev = softplus(diag_stddev).

class MultivariateNormalFullCovariance: The multivariate normal distribution on R^k.

class MultivariateNormalTriL: The multivariate normal distribution on R^k.

class NegativeBinomial: NegativeBinomial distribution.

class Normal: The Normal distribution with location loc and scale parameters.

class NormalWithSoftplusScale: Normal with softplus applied to scale.

class OneHotCategorical: OneHotCategorical distribution.

class ParamMixture: A mixture distribution where all components are of the same family.

class PointMass: PointMass random variable.

class Poisson: Poisson distribution.

class PoissonLogNormalQuadratureCompound: PoissonLogNormalQuadratureCompound distribution.

class QuantizedDistribution: Distribution representing the quantization Y = ceiling(X).

class RandomVariable: Base class for random variables.

class RelaxedBernoulli: RelaxedBernoulli distribution with temperature and logits parameters.

class RelaxedOneHotCategorical: RelaxedOneHotCategorical distribution with temperature and logits.

class SinhArcsinh: The SinhArcsinh transformation of a distribution on (-inf, inf).

class StudentT: Student’s t-distribution.

class StudentTWithAbsDfSoftplusScale: StudentT with df = floor(abs(df)) and scale = softplus(scale).

class TransformedDistribution: A Transformed Distribution.

class Uniform: Uniform distribution with low and high parameters.

class VectorDeterministic: Vector Deterministic distribution on R^k.

class VectorDiffeomixture: VectorDiffeomixture distribution.

class VectorExponentialDiag: The vectorization of the Exponential distribution on R^k.

class VectorLaplaceDiag: The vectorization of the Laplace distribution on R^k.

class VectorSinhArcsinhDiag: The (diagonal) SinhArcsinh transformation of a distribution on R^k.

class WishartCholesky: The matrix Wishart distribution on positive definite matrices.

class WishartFull: The matrix Wishart distribution on positive definite matrices.