Defined in edward/models/__init__.py.
class Autoregressive: Autoregressive distributions.
class Bernoulli: Bernoulli distribution.
class BernoulliWithSigmoidProbs: Bernoulli with probs = nn.sigmoid(logits).
class Beta: Beta distribution.
class BetaWithSoftplusConcentration: Beta with softplus transform of concentration1 and concentration0.
class Binomial: Binomial distribution.
class Categorical: Categorical distribution.
class Cauchy: The Cauchy distribution with location loc and scale scale.
class Chi2: Chi2 distribution.
class Chi2WithAbsDf: Chi2 with parameter transform df = floor(abs(df)).
class ConditionalDistribution: Distribution that supports intrinsic parameters (local latents).
class ConditionalTransformedDistribution: A TransformedDistribution that allows intrinsic conditioning.
class Deterministic: Scalar Deterministic distribution on the real line.
class Dirichlet: Dirichlet distribution.
class DirichletMultinomial: Dirichlet-Multinomial compound distribution.
class DirichletProcess: Dirichlet process \(\mathcal{DP}(\alpha, H)\).
class Empirical: Empirical random variable.
class ExpRelaxedOneHotCategorical: ExpRelaxedOneHotCategorical distribution with temperature and logits.
class Exponential: Exponential distribution.
class ExponentialWithSoftplusRate: Exponential with softplus transform on rate.
class Gamma: Gamma distribution.
class GammaWithSoftplusConcentrationRate: Gamma with softplus of concentration and rate.
class Geometric: Geometric distribution.
class HalfNormal: The Half Normal distribution with scale scale.
class Independent: Independent distribution from batch of distributions.
class InverseGamma: InverseGamma distribution.
class InverseGammaWithSoftplusConcentrationRate: InverseGamma with softplus of concentration and rate.
class Laplace: The Laplace distribution with location loc and scale parameters.
class LaplaceWithSoftplusScale: Laplace with softplus applied to scale.
class Logistic: The Logistic distribution with location loc and scale parameters.
class Mixture: Mixture distribution.
class MixtureSameFamily: Mixture (same-family) distribution.
class Multinomial: Multinomial distribution.
class MultivariateNormalDiag: The multivariate normal distribution on R^k.
class MultivariateNormalDiagPlusLowRank: The multivariate normal distribution on R^k.
class MultivariateNormalDiagWithSoftplusScale: MultivariateNormalDiag with diag_stddev = softplus(diag_stddev).
class MultivariateNormalFullCovariance: The multivariate normal distribution on R^k.
class MultivariateNormalTriL: The multivariate normal distribution on R^k.
class NegativeBinomial: NegativeBinomial distribution.
class Normal: The Normal distribution with location loc and scale parameters.
class NormalWithSoftplusScale: Normal with softplus applied to scale.
class OneHotCategorical: OneHotCategorical distribution.
class ParamMixture: A mixture distribution where all components are of the same family.
class PointMass: PointMass random variable.
class Poisson: Poisson distribution.
class PoissonLogNormalQuadratureCompound: PoissonLogNormalQuadratureCompound distribution.
class QuantizedDistribution: Distribution representing the quantization Y = ceiling(X).
class RandomVariable: Base class for random variables.
class RelaxedBernoulli: RelaxedBernoulli distribution with temperature and logits parameters.
class RelaxedOneHotCategorical: RelaxedOneHotCategorical distribution with temperature and logits.
class SinhArcsinh: The SinhArcsinh transformation of a distribution on (-inf, inf).
class StudentT: Student’s t-distribution.
class StudentTWithAbsDfSoftplusScale: StudentT with df = floor(abs(df)) and scale = softplus(scale).
class TransformedDistribution: A Transformed Distribution.
class Uniform: Uniform distribution with low and high parameters.
class VectorDeterministic: Vector Deterministic distribution on R^k.
class VectorDiffeomixture: VectorDiffeomixture distribution.
class VectorExponentialDiag: The vectorization of the Exponential distribution on R^k.
class VectorLaplaceDiag: The vectorization of the Laplace distribution on R^k.
class VectorSinhArcsinhDiag: The (diagonal) SinhArcsinh transformation of a distribution on R^k.
class WishartCholesky: The matrix Wishart distribution on positive definite matrices.
class WishartFull: The matrix Wishart distribution on positive definite matrices.